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Advances in Symplectic Tracking for Robust Modeling of Nonlinear Integrable Optics

New numerical tools to improve modeling of nonlinear 
integrable optics in IOTA with intense space charge have been 
implemented in the code IMPACT-Z.  A complex treatment of 
the nonlinear insert is used as an alternative to [1] for tracking, 
avoiding a previously problematic instability.  This is performed 
using a second-order symplectic integrator based on Yoshida 
splitting.  Space charge can be treated using either a traditional 
grid-based Poisson solve or using a new spectral solver that is 
symplectic (by design) on the N-particle phase space of the 
macroparticle system [8].  Ongoing work will investigate how 
diffusion rates for the invariants of motion in IOTA are affected 
by choice of numerical parameters (number of macroparticles, 
number of grid cells or spectral modes, number of steps), and 
the use of additional Poisson solvers is under consideration.  
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Nonlinear Integrable Optics 
in IOTA (FNAL)

Goals:  Proof of principle demonstration of nonlinear integrable 
beam optics [1-3]--to achieve nonlinear tune shifts exceeding 0.25 
without degradation of dynamic aperture and to exploit the resulting 
nonlinear decoherence to suppress collective instabilities (halo) [4].  

Inside the nonlinear insert, tracking with space charge is 
performed using a second-order symplectic integrator 
(easily generalized to higher order) [7].  Twice apply the 
following splitting for a step of size h: 

Here K is the generalized perveance of the beam and a, b are 
the aperture size in x and y, respectively. 

Following [8], a particle-based 2D symplectic space charge 
solver with rectangular boundary conditions was implemented 
in IMPACT-Z.  The collective Hamiltonian for the N-particle 
system is given explicitly by: 

•  Dynamics inside the nonlinear magnetic insert: 

•  βx = βy , D = 0 across the nonlinear drift space 
•  nπ phase advance from nonlinear drift space 
       exit to nonlinear drift space entrance  
 

drift space for  
nonlinear insert 

Courant-Snyder transformation, scaling 
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•  Dynamics in the arc external to the insert: 

{HN , IN} = 0

HN, IN are invariant under the one-turn map for the ring. 

. 

first invariant 

Complex Representation of the 
Nonlinear Integrable Potential

•  Nonlinearity: tune spread washes out  
      coherent space charge instabilities 
 
•  Integrability: ensures orbits are regular  
      and remain bounded (avoids chaos)  
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Integrable Optics at IOTA 
• Main goals for studies with a pencil electron beam:  

� Demonstrate a large tune spread of ~1 (with 4 lenses) without degradation of 
dynamic aperture ( minimum 0.25 ) 

� Quantify effects of a non-ideal lens and develop a practical lens (m- or e-lens) 

FNAL Concept: 2-m long 
nonlinear magnet 

SBIR Phase I and II:  
Radiabeam Technologies 

FMA, fractional tunes
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A single 2-m long nonlinear lens  
creates a tune spread of ~0.25 NA-PAC13: F. Shea et al., 

“Measurement of Nonlinear 
Insert Magnets” 

The vector potential is chosen to give a 2 d.o.f. Hamiltonian 
for on-energy particles within the insert of the form: 

D&N give in [1] a realizable potential U such that HN 
admits a second invariant IN :                          . 

Assumed linear with a map RN given by:  
corresponding to a thin axially-symmetric lens 
generating a phase advance nπ, for integer n.  

RN = ±I

Integrability + Maxwell’s equations require that the 2D 
magnetic vector potential       within the insert satisfies: 

Tests of a 2D Symplectic 
Spectral Space Charge Solver
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Modeling need:  Algorithms for robust and efficient  
symplectic long-term tracking with intense, high-resolution  
space charge in strongly nonlinear s-dependent B fields.  
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Application to the IOTA lattice

z = x+ iy F = As + i 

Complex representation as a single ODE [5]: 

2D Laplace Eq. 

As

Bertrand-Darboux Eq. 

Solution: 

Symplectic Integrator & 
Implementation in IMPACT-Z

Domain of analyticity of the complex function F , which defines 
the vector potential of the nonlinear insert in the transverse plane.  
Curves in blue denote magnetic field lines.  The fields vary with 
longitudinal position s due to the dependence on β, which is the 
betatron amplitude across the drift space containing the insert. 
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Upper-level splitting (once per “space charge” step) 

Lower-level splitting (once per “map” substep) 
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The map           is a momentum kick in the space charge 
charge fields computed via a Poisson solve, while   
is a momentum kick in the nonlinear insert fields using: 

MSC

MNLL

� =
h

c
p
�

Convergence of the two invariants of motion with step size h 
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Invariant HN Invariant IN 

Error in the quantities HN and IN at the exit of the nonlinear insert 
obtained when tracking a single 2.5 MeV proton across the insert 
with parameters τ = 0.45, c = 0.01 m1/2, µ0 = 0.3, and L = 2.0 m. 

single-particle Hamiltonian 
w/o space charge (“external”) 

2D space charge Green function 
in a rectangular conducting pipe 

Spectral approximation of G using Nl , Nm Fourier modes in x and y, respectively: 
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for mode (l,m): 

As an example, we studied how undesired nonlinear effects 
in the arc (kinematic nonlinear effects and 2nd/3rd-order 
dipole effects) impact preservation of the invariants HN and 
IN in the IOTA ring.   

 
 

Application:  investigation of kinematic nonlinearities 
and 2nd/3rd-order dipole effects in the IOTA ring. 
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The corresponding value of σI /<I> (for the second invariant) grows by 1% over 8000 turns. 
 
Expected to be less problematic for a large ring such as the proposed Rapid Cycling Synchrotron. 
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Diffusion of the H invariant (IMPACT-Z) 

 
 

Evolution of the first invariant with the inserts on  
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•  Tracking performed using a matched nonlinear KV distribution with ε0 = 3.9 mm-mrad. 
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Slow relative growth in <H> ~ 0.15%. 

phase mixing 
first 50 turns 

Kinematic effects plateau at 0.2%.  

3rd order symplectic dipoles w/ exact drifts 
linear symplectic tracking w/ exact drifts 

linear symplectic tracking 
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Benchmark:  Expansion of a zero-emittance uniform cylinder beam 

Benchmark:  A waterbag beam in the linear IOTA lattice (insert off) 

An initially matched waterbag 2.5 MeV p beam with 0.411 
mA and 8.0 mm-mrad (geometric) emittance is tracked in the 
linearized IOTA lattice for space charge tune depression 0.03.  

Simulation of a 2.5 MeV p beam with 4.113 mA current and 
initial radius 3.9 mm expanding in free space (a = b = 5 cm). 

 
 

Benchmark 1:  Expansion in free space of a cold uniform 
cylinder beam (III):  Hamiltonian preservation 
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Initial value of H : 

H/Np = 9.694248⇥ 10�7

�min/R0 = 0.1

R0/xaperture = 0.0781

Numerical resolution: 

Np = 1.024 M

⇠ O(hSC/L)
2

The error  in H scales as expected: 

Evolution of the N-particle Hamiltonian 
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Benchmark 1:  Expansion in free space of a cold uniform 
cylinder beam (II). 
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Beam size evolution 

      
 
  
 

�min/R0 = 0.4

�min/R0 = 0.2
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Emittance evolution 
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Measures of numerical resolution (nominal case): 

�min/R0 = 0.1

R0/xaperture = 0.0781

doubling 
distance 

hSC/L = 0.0591

(1.024M particles, 512x512 modes)  In free space, the N-particle Hamiltonian 
is an invariant of motion, which is numerically well-preserved. 

Final beam phase space 

2D symplectic 
spectral solver 

3D PIC Poisson  
solver 
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phase advance in arc 

phase advance in arc 

2D symplectic spectral solver 

No visible secular emittance growth. 

(1.024M particles, 64x64 modes)  Using fully symplectic space charge 
tracking is expected to reduce spurious numerical emittance growth [8]. 

2 nonlinear inserts ON                2.5 MeV protons 
   L=1.8 m, τ=0.45,                      Matched “nonlinear KV” beam  
  c = 0.009 m1/2, µ0=0.3             ε0 = 3.9 mm-mrad, σδ = 0 
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Physical quantities 

This representation is well-behaved and avoids a numerical 
instability associated with tracking using the form in [1]. 

Initially, σH ≈ 0.  Note the rapid initial jump followed by linear growth. 
The corresponding value of               grows by 1% over 8000 turns. 
Simulations using different values of ε0 suggest that                           .                            
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