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Nonlinear Integrable Optics Symplectic Integrator &
in IOTA (FNAL) Implementation in IMPACT-Z Here K is the generalized perveance of the beam and a, b are

the aperture size in x and y, respectively.

Goals: Proof of principle demonstration of nonlinear integrable Inside the nonlinear insert, tracking with space charge is

beam optics [1-3]--to achieve nonlinear tune shifts exceeding 0.25 performed using a second-order symplectic integrator i . .

without degradation of dynamic aperture and to exploit the resulting (easily generalized to higher order) [7]. Twice apply the ofa uniform cylinder beam
nonlinear decoherence to suppress collective instabilities (halo) [4]. following splitting for a step of size /:

Simulation of a 2.5 MeV p beam with 4.113 mA current and
H=H, +H, M(h) = My (g) Ma(h)My (g) +O(h%) initial radius 3.9 mm expanding in free space (@ =b =5 cm).
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The map Msc is a momentum kick in the space charge [ R i
charge fields computed via a Poisson solve, while Mz Yt Deweem T ! bsancam © °
« Dynamics inside the nonlinear magnetic insert: is a momentum kick in the nonlinear insert fields using: (1.024M particles, 512x512 modes) In free space, the N-particle Hamiltonian
L . . . . is an invariant of motion, which is numerically well-preserved.
The vector potential is chosen to give a 2 d.o.f. Hamiltonian Pt = Odj b= Apy +idpy h Y P
for on-energy particles within the insert of the form: dz »°
Benchmark: A waterbag beam in the linear I0TA lattice (insert off)
" 1 (P24 P) L X Y Convergence of the two invariants of motion with step size h
T2 B(s) \e/Bls) e/Bls) 4 An initially matched waterbag 2.5 MeV p beam with 0.411

Courant-Snyder transformation, scaling mA and 8.0 mm-mrad (geometric) emittance is tracked in the

linearized IOTA lattice for space charge tune depression 0.03.
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Hy = 5(PfN + P2y + X3+ YR) = 7U(XN,Yy)  firstinvariant
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D&N give in [1] a realizable potential U such that Hy

. . . 0025 2D symplectic spectral solver
admits a second invariant Iy: {Hy,In} =0.

logyo(h/L) logyo(h/L)

Error in the quantities Hy and /y at the exit of the nonlinear insert
obtained when tracking a single 2.5 MeV proton across the insert
with parameters 7= 0.45, ¢ = 0.01 m"2, 4y =0.3,and L =2.0 m. 0005
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* Dynamics in the arc external to the insert:

Emittance growth (%)

spectral solver

Assumed linear with a map Ry given by: Ry = £
corresponding to a thin axially-symmetric lens
generating a phase advance nr, for integer n. o200

Application to the IOTA lattice et

No visible secular emittance growth.
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Hy, Iy are invariant under the one-turn map for the ring. . . . . . .
As an example, we studied how undesired nonlinear effects (1.024M particles, 64x64 modes) Using fully symplectic space charge

in the arc (kinematic nonlinear effects and 2n9/39-order tracking is expected to reduce spurious numerical emittance growth [8].
Modeling need: Algorithms for robust and efficient dipole effects) impact preservation of the invariants Hy and
symplectic long-term tracking with intense, high-resolution I in the IOTA ring. Conclusion
space charge in strongly nonlinear s-dependent B fields. ’
2 nonlinear inserts ON 2.5 MeV protons New numerical tools to improve modeling of nonlinear
Maighed noninear KV beam integrable optics in IOTA with intense space charge have been
z - — = implemented in the code IMPACT-Z. A complex treatment of
Complex Representation of the implementecin te A i
s the nonlinear insert is used as an alternative to [1] for tracking,

Nonlinear Integrable Potential avoiding a previously problematic instability. This is performed
using a second-order symplectic integrator based on Yoshida
splitting. Space charge can be treated using either a traditional

grid-based Poisson solve or using a new spectral solver that is

1%]

Integrability + Maxwell’s equations require that the 2D
magnetic vector potential A, within the insert satisfies:

3 order symplectic dipoles w/ exact drifts

g T TEaR T ey oea symplectic (by design) on the N-particle phase space of the
2, 52 < isusvblectciack macroparticle system [8]. Ongoing work will investigate how
(07 +0;)As =0 2D Laplace Eq. &, ohosh miing diffusion rates for the invariants of motion in IOTA are affected

Bertrand-Darboux Eq.

first 50 turns by choice of numerical parameters (number of macroparticles,
JOR s o o o Slow relative growth in <H> ~ 0.15% .
2y(9% — O As + (v — 2® +1)0,0,As + 3ydpAs — 329, A =0 05 number of grid cells or spectral modes, number of steps), and
g B I S S S— the use of additional Poisson solvers is under consideration.
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Kinematic effects plateau at 0.2%. turn References
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